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1. I N T R O D U C T I O N  

During its spectacular rise, the computational has joined the theoretical 
and experimental branches of science, and is rapidly approaching its two 
older sisters in importance and intellectual respectability. Its mark on high 
technology has been equally great; computational mathematical modeling 
has, in the last few years, replaced much experimentation, and computing 
makes it practical to extract hidden information from massive amounts of 
data by subtle mathematical manipulations. A science of computing is 
beginning to emerge, like Hercules from its cradle. 

In this paper I plan to illustrate, by examples, anecdotes, and 
theoretical speculations, what mathematics has done for computing, and 
what computing has done for mathematics. 

2. M A T H E M A T I C A L  M E T H O D S  IN C O M P U T I N G  

The rapid rise of computing was made possible by striking 
improvement in computer hardware, software, and peripherals, and by 
equally striking improvements in the discretization of the equations that 
model the physical phenomena, as well as by clever algorithms to solve the 
discretized equations. The last two named have been as important as the 
first three; John Rice estimated that the speedup in solving elliptic boun- 
dary value problems gained during the years from 1945 to 1975 due 
to improved numerical methods has been greater than the gain in speed 
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of the Cray I over the IBM 650. The contributions of mathematics 
and mathematicians--and of honorary mathematicians like Nick 
Metropolis--to this process has been crucial; here is a partial list of 
mathematical ideas that have borne fruit. 

The methods of alternating direction and fractional step initiated by 
Peaceman, Ratchford, Douglas, Yanenko, and Strang are used universally. 

High-order difference schemes developed by Lax and Wendroff, Mac- 
Cormack, and others have been particularly effective in meteorology and 
are of use for calculating any smooth flow. 

The particle-in-cell method, developed by Harlow, has been very effec- 
tive in problems where two different media are in contact and exert a force 
on each other, such as in high-velocity impact. 

Spectral methods, pioneered by Leith and put on the map by Orszag 
and Gottlieb, have been made efficient by the use of the fast Fourier trans- 
form, introduced by Cooley and Tukey; they are of use in calculating 
space-periodic flows, both smooth and rough. 

Implicit methods: a variety of ideas, introduced by Hirt, Warming, 
Beam, Hardned, and others have proved effective in both incompressible 
and compressible flow calculations, as well as in magnetofluid dynamics. 

The vortex method of Chorin generates and propagates vorticity in a 
very original fashion. The method has been very effective in calculating 
effects that depend sensitively on vorticity, such as drag at high Reynolds 
numbers. The method has been used by Peskin to calculate flows around 
valves, real and artificial, in the beating heart. 

The method of complex coordinates, developed by Garabedian, allows 
a unified treatment of subsonic and supersonic regimes in flows, and has 
been used successfully to design shockless transonic airfoils, compressor 
blades, and turbines. 

The multigrid method suggested by Federenko and Bahvalov, and 
developed by Brandt, is an extremely rapid method for solving elliptic 
equations with variable coefficients. 

The capacitance matrix method of Widlund exploits the fast algorithm 
for solving Poisson's equation in rectangles, developed by Bunemann and 
Hockney, to solve Poisson's equation, and related ones, in more general 
geometries. 

The challenge of calculating flows with shocks has generated a number 
of mathematical ideas. One line of thought, shock capturing, started with v. 
Neumann and Richtmyer's notion of artificial viscosity; to this was added 
the notion of difference equation in conservation form with numerical flux 
function and Godunov's idea of threading together solutions of the 
Riemann initial value problem. Glimm's method is also based on solutions 
of Riemann problems; it employs a sequence of random parameters and 



Mathematics and Computing 751 

has the virtue of calculating entropy production more realistically than 
other methods that employ an artificial viscosity. Chorin noted that this 
feature of the method makes it a good candidate for calculating reacting 
flows. 

The far-reaching modification that Van Leer, Colella, and Woodward 
have made of Godunov's method has resulted in astonishingly accurate 
calculations of very complicated patterns of shocks. 

The method of flux-corrected transport, developed by Boris and Book, 
and artificial compression, developed by Harten, are successful in resolving 
discontinuities, both contact and shock, that develop in flows of com- 
pressible, multimedium fluids. 

Jameson has developed intricate, rapidly convergent iterative tech- 
niques for the calculation of steady transonic flow fields with shocks 
around complicated aerodynamic shapes. 

An alternative to shock capturing is shock tracking, pioneered by 
Moretti, Richtmyer, and Lazarus, greatly advanced by Glimm and 
McBryan, and recently by Colella. 

The finite element method is a significant alternative to finite differen- 
ces, more able to cope with complicated geometrical configurations. 

Last but not least, we mention the Monte Carlo method. 

3. E X P E R I M E N T A L  C O M P U T I N G  

In a prophetic lecture delivered in Montreal in 1945, see Ref. 10, v. 
Neumann concluded that "really efficient high-speed computing devices 
may, in the field of nonlinear partial differential equations as well as in 
many other fields which are now difficult or entirely denied of access, 
provide us with those heuristic hints which are needed in all parts of 
mathematics for genuine progress." 

In precisely this fashion have Fermi, Pasta, and Ulam ~) discovered 
the remarkable, almost periodic, behavior of the vibrations of nonlinear 
chains, and Kruskal and Zabusky the generation and interaction of 
solitons. The complete integrability of the Toda Lattice became plausible 
through very careful numerical calculations by Joe Ford; (3) Mitchell 
Feigenbaum discovered his remarkable universal laws on iterations by 
analyzing numerical experiments. Numerical studies led Lorenz (8~ to the 
concept of a strange attractor; the understanding of chaotic behavior of 
simple dynamic systems coexisting with islands of stability has been much 
enhanced by numerical studies. Not a bad prediction by v. Neumann, 
especially since the computers he spoke of in 1945 were then merely 
figments of his imagination. 

Already Legendre and Gauss used tables of primes to guess the 
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asymptotic distribution of prime numbers; with the advent of modern com- 
puters the quest for asymptotic laws can be and is pursued with a 
vengeance. So are the roots of Riemann's zeta function; recently van de 
Lune and te Riele have shown (~2) that the zeta function has exactly 
300,000,001 zeros whose imaginary parts lie between 0 and 
119,590,809.282, and all of them have real part 1/2. 

In Ref. 9, Mostow did a lot of computing to construct fundamental 
domains for certain special discrete groups; the computations do not enter 
the final proof but were essential in discovering what was to be proved. 

In Ref. 11, Phillips and Sarnak used numerical computations to 
estimate the lowest eigenvalue of the Laplace-Beltrami operator; they were 
able to prove mathematically the phenomena discovered experimentally. 

Many other examples, in geometry, in combinatorics, can be given of 
successful computing for gaining insight. Experimental computing has truly 
become a way of life in most branches of mathematics. 

4. HOW M U C H  CONFIDENCE CAN ONE PLACE IN A C O M -  
PUTATION? 

There are many kinds of computations and many kinds of confidences. 

(a) Some computations are part of the logical structure of a proof. If 
real numbers are used, the computations have to furnish ironclad 
bounds such as are provided by interval arithmetic; we give some 
examples: 
i. Lanford (s/ proves Feigenbaum's conjectures concerning 
iterates of a map. The conjecture states, roughly, that high-order 
iterates of all unimodal maps of an interval into itself, when 
rescaled appropriately, have very nearly the same shape. This 
shape is characterized by a functional equation of the form 

r f  = f 

Lanford proves the existence and stability of a fixed point f by 
first computing, by iteration, an approximate fixed point f~ and 
then demonstrating the contractive character of a quasi-Newton 
type iteration in some neighborhood off~. 
ii. In Ref. 1, Curry studied the quadratic map 

T: (x, y) --* (1 + y - a x  2, bx) 

originally investigated by Henon. Among other things, he was 
looking for transverse homoclinic points, i.e., the transversal 
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(b) 

intersections of the stable and unstable manifolds issuing from 
fixed points of T. Such an intersection can be rigorously shown 
to take place, provided that one can generate enough 
approximate points on the stable and unstable manifolds, with 
guaranteed accuracy, a nontrivial task because of the inherent 
instability of iterating the mapping T. 
i i i .  The most famous proof relying on machine computations is 
Haken and Appel's celebrated proof of the four-color theorem. 
Here all the needed calculations are discrete and can be carried 
out with absolute accuracy. This proof has been criticized by 
some for providing no insight why the result is true; this criticism 
is valid, but can be leveled with equal force against many other 
proofs which employ no computer. Others have criticized the 
proof because it is so difficult for a single reader to verify its 
correctness; true, but equally true of other, hand-carved, 
elaborate arguments extending over thousands of pages. There 
are also some who refuse on principle to accept a computer- 
assisted proof. This strikes me as headed in the wrong direction; 
after all, logicians agree that an unassailable mathematical proof 
is one executable by a Turing machine. There is something 
faintly ridiculous about holding up as the epitome of exactitude 
proofs carried out by imaginary computers and then balking at a 
proof carried out by a real one. 

Many, perhaps most, calculations are carried out to provide 
quantitative information about problems that are reasonably 
well-understood theoretically, such as initial and boundary value 
problems for ordinary and partial differential equations which 
have been shown to have unique solutions that depend con- 
tinuously on the data. When solving such problems 
approximately we are looking for realistic, rather than ironclad, 
error estimates. 

Realistic error estimates are, alas, not easy to come by for 
problems of real interest, so one proceeds otherwise. A sequence 
of descretized problems is set up, depending on one or several 
parameters A which measure the scale of discretization; the 
solution of the discretized problem is denoted by u~. We require 
the scheme to be stable and to be compatible with the original 
problem; stability means that the u~ remain bounded as A tends 
to zero; compatibility means that if a sequence u~ converges in 
some topology as A tends to zero, its limit is a solution of the 
original problem; see Ref. 7. 



754 Lax 

(c) 

It is easy to show that if all u~ are contained in a compact 
set, then the scheme converges. Compactness, however, does not 
always hold, and even where it does it is hard to prove. Stability, 
necessary for compactness, is not easy to prove either but al least 
we possess a number of heurisic criteria of practical value. 
Experience shows that stability and compatibility are valuable 
design principles for discretizing well-posed and reasonably well- 
understood problems. 

There is a large class of calculations, perhaps larger than we sus- 
pect, whose significance is only statistical. The investigations of 
the behavior of the iterates of volume preserving and other maps 
belong to this class. On chaotic regions, high-order iterates of 
such maps depend extremely sensitively on the starting point. 
For example, Curry (1) has found that when Henon's map T, 
described in paragraph (a), is iterated 60 times on a Cray 1, the 
outcome is completely different from the same calculations 
carried out on a CDC 7600; this is due to the difference in the 
manner in which the two computers round. Clearly, one cannot 
compute a sequence of thousands of iterates of such transfor- 
mations. Nevertheless, for transformations about which theory 
has something to say, numerically computed strings of 
pseudoiterates behave very much as genuine iterates are sup- 
posed to. For instance, KAM theory asserts that for a 
Hamiltonian flow that differs little from a completely integrable 
one, most of the trajectories lie on tori of lower dimension. The 
classical calculations ~f Henon and Heiles (41 bear this out; they 
deal with a Hamiltonian that is the sum of a quadratic and a 
cubic term, in four-dimensional phase space. For flows with low 
energy, the cubic terms are negligible; for these the 
pseudoiterates of the Poincar6 map associated with the flow lie 
along smooth curves. For flows with medium energy, a portion 
of pseudoiterates of the Poincar6 map lie along smooth curves; 
the rest are scattered chaotically. At high energy the 
pseudoiterates are completely chaotically distributed. 

How to explain this behavior of pseudoiterates? Suppose for 
simplicity that the transformation T in question maps the n- 
dimensional torus into itself. A computer operating with N digit 
numbers maps n cubes of side length I0 -N into cubes of the same 
size. Denote this transformation by TN. Numerical experimen- 
tations suggest that iterates of such approximations T u behave, 
in a sense to be made precise, like iterates of the transformation 
T which they approximate. In fact, if this were not so, at least in 
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an overwhelming number of cases, it would serve no purpose at 
all to carry out numerical experimentations! 

A result of the above type would be like the KAM theory, 
with the additional complication that the perturbation that 
changes T into T~v changes the domain of the map from a 
manifold to a finite set. No such results are known; I would, 
however, like to call attention to Ref. 6, where it is shown that if 
T is volume-preserving, TN can be chosen to be volume-preserv- 
ing too; this is a result in the right direction, but far from what is 
wanted. 

(d) An increasing number of calculations attempt to deal with 
unstable phenomena, such as the interface instabilities of 
Helmholtz and Rayleigh-Taylor, turbulent flows at high 
Reynolds number, turbulent multiphase flows, and turbulent 
combustion. Calculations of this kind typically contain 
algorithms that are discrete analogues of physical processes. The 
success of such modeling is measured by the extent to which the 
approximate flow patterns resemble actual flows observed in 
laboratories and in nature. There is nothing wrong with such a 
criterion; a scheme which fails in comparison with reality has to 
be rejected resolutely. Yet there is something unsatisfactory when 
a computational scheme usurps the place of a theory. The dis- 
crete calculations ought to be the shades cast by a Platonic con- 
tinuum theory of unstable phenomena. 

As more researchers carry out more and more numerical experiments, 
looking for guidance, it is inevitable that some will be misguided. A spec- 
tacular example from the past concerns the distribution of prime number. 
The number of primes less than x, denoted as ~(x), is, according to the 
Prime Number theorem, asymptotic to x/logx. Already Gauss has 
suggested that the logarithmic integral, denoted as li(x) and defined by 

fxd. 
li(x) PVjo log u 

is in some sense a better approximation to ~(x) than x/log x. Numerical 
experiments suggest that this is indeed so; furthermore, for all values of x 
for which rE(x) has been computed, it appears that 

~(x) < li(x) 

This was generally believed to be true for all x, until Littlewood, in 1914, 
proved the contrary: rc(x)>li(x) for infinitely many values of x. 

822/43/5-6-3 
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Littlewood's proof was indirect and gave no indications where the first 
violation might occur. A student of Littlewood's came up with a construc- 
tive proof that there is a number x less than 10 raised to the power 10 four 
times, for which ~ ( x ) >  Ii(x). Later research whittled this number down 
somewhat, but still way out of the range for which re(x) is expected in the 
foreseeable future to be computed exactly. 
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